miércoles, 6 de mayo de 2015

Área entre una función y el eje de abscisas

1. La función es positiva

parábola
Si la función es positiva en un intervalo [a, b] entonces 
la gráfica de la función está por encima del eje de abscisas.
El área de la función viene dada por:
integral definida
Para hallar el área seguiremos los siguientes pasos:
1º Se calculan los puntos de corte con con el eje OX, haciendo 
   f(x) = 0 y resolviendo la ecuación.
2º El área es igual a la integral definida de la función
   que tiene como límites de integración los puntos de corte.

2. La función es negativa

representa gráfica
Si la función es negativa en un intervalo [a, b] entonces la 
gráfica de la función está por debajo del eje de abscisas. 
El área de la función viene dada por un viene dada por:
integral definida

3. La función toma valores positivos y negativos

representación gráfica
En ese caso el el recinto tiene zonas por encima y por debajo
del eje de abscisas. Para calcular elárea de la función seguiremos
los siguientes pasos:
1º Se calculan los puntos de corte con con el eje OX, haciendo 
    f(x) = 0 y resolviendo la ecuación.
2º Se ordenan de menor a mayor las raíces, que serán los límites
 de integración.
3º El área es igual a la suma de las integrales definidas en
   valor absoluto de cada intervalo.

Área comprendida entre dos funciones

representación gráficaGRÁFICA
El área comprendida entre dos funciones es igual al área de la 
función que está situada por encima menos el área de la función 
que está situada por debajo.
integral

No hay comentarios:

Publicar un comentario